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A BAYESIAN WAY TO MAKE STOPPING RULES MATTER∗

ABSTRACT. Disputes between advocates of Bayesians and more orthodox approaches
to statistical inference presuppose that Bayesians must regard must regard stopping rules,
which play an important role in orthodox statistical methods, as evidentially irrelevant. In
this essay, I show that this is not the case and that the stopping rule is evidentially relevant
given some Bayesian confirmation measures that have been seriously proposed. However,
I show that accepting a confirmation measure of this sort comes at the cost of rejecting two
useful ancillary Bayesian principles.

1. INTRODUCTION

A stopping rule specifies when the researcher will cease gathering new data
and commence analyzing what has been collected so far. Stopping rules
play a prominent role in the disputes between advocates of the Bayesian
approach to statistical inference and defenders of more orthodox methods,
such as the Neyman-Pearson statistical theory. Bayesians say that stopping
rules are irrelevant to statistical inference while the defenders of ortho-
dox statistical theories take the contrary position. Deborah Mayo (1996,
chapter 10) attempts to turn this difference to the advantage of Neyman-
Pearson statistics by arguing that, as a result of disregarding stopping rules,
Bayesians sometimes must judge it irrelevant that an experimental proced-
ure was assured of generating an incorrect result.1 Joseph Kadane et al.
(1996a, 1996b) respond by showing that this argument works only if the
Bayesian prior probability distribution violates the principle of countable
additivity, which several Bayesians have argued on independent grounds
is a criterion of rational degrees of belief (cf. Howson and Urbach 1993, p.
81; Maher 1993, pp. 198–9; Williamson 1999). For their part, Bayesians
and other critics of orthodox methods charge that allowing stopping rules
to influence statistical inference leads to intuitively absurd conclusions (cf.
Pratt 1962, pp. 314–5; Kyburg 1974, pp. 53–4; Berger and Wolpert 1988,
pp. 90–2; Howson and Urbach 1993; pp. 241–3).

In what follows, I demonstrate that a central presupposition of this de-
bate is mistaken. Specifically, I show that it is possible for a Bayesian to
judge stopping rules relevant to assessing the evidential significance of a
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body of data, provided that an appropriate Bayesian confirmation meas-
ure is adopted. However, I also show that adopting such a confirmation
measure necessitates relinquishing two ancillary principles that are use-
ful to Bayesian confirmation theory and statistics. Thus, the reason for a
Bayesian to reject the relevance of stopping rules is not that this position
follows inexorably from core Bayesian principles; instead, it is that doing
so would be a cause of considerable inconvenience.

2. THE LIKELIHOOD PRINCIPLE AND STOPPING RULES

Both sides of the dispute sketched in the foregoing section assume that
Bayesians must dismiss stopping rules because their theory is inherently
tied to the likelihood principle (LP), which entails that the stopping rule is
irrelevant to the evidential force of the experimental outcome (cf. Berger
and Wolpert 1988, pp. 74–89).

The likelihood of a hypothesis H given some data E is a measure of the
probability of E on the assumption that H is true. In particular, suppose
that H is a set of mutually exclusive hypotheses such that we are certain
that the true hypothesis is in H. Throughout this paper, the boldfaced H
shall be used to represent sets of alternative hypotheses of this sort. Then
for every Hi in H, the likelihood of Hi given E, L(Hi,E), is equal to
kP (E|Hi), where k is some positive constant (cf. Edwards 1984, 9–10).
An immediate consequence of this definition is that L(Hi,E) = L(Hj,E)

just in case P(E|Hi) = P(E|Hj), where Hi and Hj are any two members
of H. Thus, in the following discussion, I will substitute equalities of the
latter sort for those of the former kind for convenience.

The LP can be stated in several different ways; I choose the formulation
that is most directly relevant to our concerns. Let us introduce the notation
c(H,E) to represent the degree of evidential support or confirmation that
E provides for H . Suppose that E and E′ are two sets of data produced by
two separate experiments. Then according to the LP:

LP: If there is a constant k > 0 such that P(E|Hi) =
kP (E′|Hi) for all Hi ∈ H, then for all Hi ∈ H, c(Hi, E) =
c(Hi, E

′).2

If we accept the above principle, then we must conclude that the stopping
rule is generally irrelevant to the assessment of the evidential force of an
experimental outcome.

To see how this is so, consider the following simple example. Suppose
that our experiment consists in flipping the coin ten times and recording
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the number of heads. The statement E might assert that five heads were
obtained, and H might be the hypothesis that the coin is fair. In this case,
P(E|H) would be computed by the following formula:

Cn
xpx(1 − p)n−x

where x is the number of heads, n the number of flips, p the probability
of heads specified by the hypothesis, and Cn

x shorthand for the quantity
n!/x!(n − x)!. Notice that Cn

x is a positive constant, once the values of
x and n are fixed. For example, in the present case we have C10

5 = 252.
Let each Hi in H specify some point value pi for the probability of heads.
Thus, for each Hi in H, P(E|Hi) = 252p5

i (1 − pi)
5.

However, we could have designed the experiment differently so that the
number of heads would be fixed in advance, say at five, while the number
of flips could vary from one repetition of the experiment to the next. That
is, we could plan to flip until we got five heads, and we would be concerned
with how many flips were required for this result. Imagine that the fifth
head turned up on the tenth flip, and let E′ record this information. This is
an example of a negative binomial experiment, and the likehoods for such
an experiment can be computed by the following formula:

Cn−1
x−1p

x(1 − p)n−x

where x, n, and p are interpreted as in the binomial formula. Hence, for
each Hi in H, P(E′|Hi) = 126p5

i (1 − pi)
5. Moreover, we can easily see

that P(E|Hi) = kP (E′|Hi), for each Hi when k = 252/126 = 2. Hence,
the LP tells us that, for each Hi in H, the degree of evidential support given
by E to Hi equals that which E′ gives to Hi .

In general, then, the stopping rule affects likelihoods only in a way that
can be expressed by a positive constant.3 Therefore, the LP tells us that the
stopping rule is irrelevant to the assessment of the evidential significance
of the experimental result. However, the difference between the binomial
and negative binomial distribution does make a difference from the point of
view of frequentist theories of statistical inference. For example, one can
construct examples in which the difference between the binomial and neg-
ative binomial would make the difference between “accept” and “reject”
in a standard significance test, even though the same data was generated
in each case (cf. Berger and Wolpert 1988, pp. 20–1). Defenders of the LP
take such cases as illustrations of the intuitively bizarre consequences of
the frequentist approach to statistical inference.
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3. THE LP AND THE BAYESIAN CORE

Let us begin with a brief exposition of the Bayesian approach to sci-
entific inference. According to Bayesians, rational people assign degrees
of belief to propositions that can be represented as probabilities. Sci-
entific inference, then, is a matter of altering such degrees of belief as
additional information is acquired. Bayes’s theorem plays a central role
in determining how degrees of belief are to be changed. Bayes’ theorem
states:

P(Ha|E) = P(Ha)P (E|Ha)∑
i P (Hi)P (E|Hi)

,(1)

Where the Hi’s are the members of H, and Ha is any Hi .
It is important to remember that the probabilities in (1) represent the

degrees of a particular (ideally rational) agent at a particular time. Since
Bayesian inference concerns how degrees of belief change over time, it
is necessary that some further principle be given that relates an agent’s
beliefs at one time to his later beliefs. The most commonly used principle
for this purpose is called strict conditionalization. Let the probability func-
tion Pnew(•) represent the agent’s degrees of belief after he has learned E

and nothing else. Let the probability function Pold(•) represent the same
agent’s degrees of beliefs immediately prior to learning E. Then strict
conditionalization asserts that, for any H ,

Pnew(H) = Pold(H |E).

So far we have said nothing about confirmation or evidence. The fol-
lowing qualitative statements about confirmation are commonly accepted
by Bayesians:

E confirms or supports H when P(H |E) > P(H)

E disconfirms or undermines H when P(H |E) < P(H)

E is neutral with respect to H when P(H |E) = P(H).
(Howson and Urbach 1993, p. 117)

I call these propositions “qualitative” because they provide no analysis of
degrees of confirmation – no analysis of what it is, for example, for E to
more strongly confirm H than E′. That is what a confirmation measure is
supposed to provide. A confirmation measure will be said to be a Bayesian
confirmation measure just in case it entails the three qualitative principles
of confirmation stated above.
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In what follows, the interpretation of probabilities as degrees of belief,
the principle of strict conditionalization, and the claims about qualitat-
ive confirmation enunciated above shall be collectively referred to as the
Bayesian core. This expression is intended to indicate that anyone who
accepts these propositions can be justifiably labeled a Bayesian.4 What I
show, therefore, is that one can consistently accept the Bayesian core while
rejecting the LP.

Let us consider whether accepting the Bayesian core commits one to
the LP. Mayo argues that Bayesians are saddled with the LP by citing
prominent Bayesian statisticians who have endorsed the principle (1996,
pp. 319, 340) and by asserting that “the LP follows from Bayes’ theorem”
(ibid., p. 345).5 But these arguments are unpersuasive. First, that promin-
ent Bayesians have advocated the LP does not demonstrate that Bayesian
confirmation theory is inextricably linked to it. Second, it is false that
Bayes’ theorem entails the LP. The reason for this is very simple: the LP
is a principle concerning evidence, whereas Bayes’ theorem is an innocu-
ous theorem of the probability calculus that says nothing about evidence.
Therefore, Bayes’ theorem alone does not entail the LP.

Moreover, since the Bayesian core says nothing about degrees of con-
firmation, it does not entail the LP. Suppose for example that P(H |E) >

P(H) and P(H |E′) > P (H). Then the qualitative definitions of confirm-
ation given above allow us to conclude that E and E′ both confirm H .
However, these definitions provide no basis for asserting, or denying, that
E and E′ each confirm H to the same degree. Thus, accepting the Bayesian
core does not require taking any particular stance with regard to the LP.

However, accepting a particular confirmation measure in addition to
the Bayesian core changes all this. Consider these three examples of
commonly invoked Bayesian confirmation measures:

d(H,E) =df P(H |E) − P(H)

r(H,E) =df log

[
P(H |E)

P (H)

]

l(H,E) =df log

[
P(E|H)

P (E|H̄
]

.

(cf. Fitelson 1999, p. 362; Maher 1999, p. 55)

For ease of exposition, I will refer to these three confirmation measures as
d, r, and l, respectively.
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It can be easily shown that d, r, and l are each Bayesian confirmation
measures, given the natural convention that:

E confirms H if and only if c(H,E) > 0,
E disconfirms H if and only if c(H,E) < 0,
E is neutral with respect to H if and only if c(H,E) = 0.

The case is trivial for d and r. That l is a Bayesian confirmation measure
can also be seen once one notes that Bayes’ theorem can be written like
so:

P(H |E) = P(H)

P (H) + P(E|H̄ )

P (E|H)
P (H̄ )

.(2)

However, d, r, and l are far from being the only Bayesian confirmation
measures. For example, consider these three:

ρ(H,E) =df P(H & E) − P(H) × P(E)

n(H,E) =df P(E|H) − P(E|H̄ )

m(H,E) =df P(E|H) − P(E).6

Again for convenience, I shall refer to these three measures as ρ, n, and
m, respectively. It is easy to see that ρ is a Bayesian confirmation measure
once one observes that P(H & E) = P(H |E)P (E). So ρ equals zero
exactly when P(H |E) = P(H); ρ is greater than zero when P(H |E) >

P(H), and ρ is less than zero when P(H |E) < P(H). Likewise, a cursory
examination of the equation in (2) shows that n is a Bayesian confirmation
measure. That the same is true for m is also trivial once we note that, by
Bayes’ theorem,

P(H |E)

P (H)
= P(E|H)

P (E)
.

The confirmation measures listed above are not equivalent, in the sense
that they may produce conflicting rankings of the degree of confirmation
that a body evidence confers on the members of a set of hypotheses (Fi-
telson 1999, S364). Not surprisingly, then, there is some dispute among
Bayesians as to which measure ought to be preferred (cf. Schlesinger 1995,
Milne 1996). For example, Peter Milne (1996) purports to give a demon-
stration that r is the “One True Measure of Confirmation”. Other Bayesians
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give what they take to be compelling reasons for rejecting r in favor of d or
l (cf. Fitelson 1999, S368–9).7 The most common argument of this kind,
sometimes called the “tacking paradox”, is based on what some Bayesians
perceive to be an undesirable feature of r. That is, if H entails E, and H ′ is
the conjunction of H and any arbitrary hypothesis whatsoever consistent
with H , then according to r, E confirms H and H ′ to the same degree.
Milne, for his part, does not find this consequence undesirable and asserts
that “the tacking paradox is a wretched shibboleth” (1996, p. 23).

We need not be detained by these internecine squabbles. What is
important for our purposes is that the different Bayesian confirmation
measures often lead to divergent conclusions about confirmation (cf. Fi-
telson 1999). As we will see below, the LP is a case in point. In particular,
I show that the confirmation measures ρ, n, and m, but not measures d,
r, and l, are k-measures, where the expression “k-measure” is defined as
follows.

µ is a k-measure if and only if (a) µ is a Bayesian confirm-
ation measure, and (b) if there is a constant k > 0 such that
P(E|Hi) = kP (E′|Hi) for each Hi ∈ H, then for each Hi ∈ H,
µ(Hi,E) = kµ(Hi,E

′).

Obviously, every k-measure violates the LP, so the interesting question lies
is whether k-measures exist. We turn to that issue now.

4. BAYESIAN CONFIRMATION MEASURES THAT VIOLATE THE LP

The following is a theorem of the probability calculus:

LIKELIHOOD THEOREM. Let k > 0 be constant, and for all Hi in H, let
P(E|Hi) = kP (E′|Hi). Then for all Hi in H, P(Hi|E) = P(Hi|E′).

The proof of the likelihood theorem is quite simple. Let Ha be an arbitrarily
chosen member of H, and suppose that for all Hi in H, let P(E|Hi) =
kP (E′|Hi). Then from Bayes’ theorem, we have:

P(Ha|E) = P(Ha)P (E|Ha)∑
i P (Hi)P (E|Hi)

= P(Ha)kP (E′|Ha)∑
i P (Hi)kP (E′|Hi)

= P(Ha|E′)

Given the likelihood theorem, we can derive the LP if we make the
following assumption about quantitative confirmation:

(C) If P(H |E) = P(H |E′), then c(H,E) = c(H,E′).
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Ward Edwards et al. (1963, p. 327) present essentially this argument for
the LP: a Bayesian should accept the LP because it follows from the likeli-
hood theorem and (C). However, they do not explicitly formulate (C), and
they give no indication of being aware that it is a substantive assumption
required for their argument. Indeed, Bayesian analyses of various aspects
of scientific methodology often assume implicitly (C) and its companion
c(H,E) > c(H,E′) if P(H |E) > P(H |E′) (cf. Horwich 1982, Maher
1988). Furthermore, (C) is entailed by the confirmation measures d, r, and
l. Recall that d(H,E) =df P(H |E) − P(H), while

r(H,E) =df log

[
P(H |E)

P (H)

]
.

It is trivial that (C) holds when c(H,E) is d or r, so I provide the proof
only in the case in which c(H,E) = l(H,E). Recall that

l(H,E) =df log

[
P(E|H)

P (E|H̄ )

]
.

Suppose that P(H |E) = P(H |E′). Then from Bayes’ theorem we have:

P(E|H)

P (E|H̄ )
= P(H |E)P (H̄ )

P (H̄ |E)P (H)
= P(H |E′)P (H̄ )

P (H̄ |E′)P (H)
= P(E′|H)

P (E′|H̄ )

Hence, if P(H |E) = P(H |E′), then l(H,E) = l(H,E′). A Bayesian who
accepts d, r, or l as her confirmation measure, therefore, is committed to
the LP.

Since (C) together with a theorem of the probability calculus entails
the LP, it follows that any Bayesian confirmation measure that violates
the LP must also violate (C). And indeed, it is easy to see that any k-
measure does so. That is, if the antecedent of the likelihood theorem holds
and µ is a k-measure, then for all Hi in H, P(Hi|E) = P(Hi|E′) while
µ(Hi,E) = kµ(Hi,E

′). Moreover, we can show that ρ, n, and m are
k-measures.

Since we have seen already that ρ, n, and m are Bayesian confirmation
measures, it only remains to show that these measures satisfy article (b)
of the definition of a k-measure. Let us begin with ρ. Suppose that, for all
Hi ∈ H, P(E|Hi) = kP (E′|Hi), where k > 0. Then we have:

P(E) =
∑

i

P (Hi)P (E|Hi) =
∑

i

P (Hi)kP (E′|Hi)(1)

= k
∑

i

P (Hi)P (E′|Hi) = kP (E′).



A BAYESIAN WAY TO MAKE STOPPING RULES MATTER 221

Let H be an arbitrarily chosen member of H. But now:

ρ(H,E) =df P(H & E) − P(H)P (E)(2)

= P(H)P (E|H) − P(H)P (E)

= P(H)kP (E′|H) − P(H)kP (E′)
= k[P(H)P (E′|H) − P(H)P (E′)]
= k[P(H & E′) − P(H)P (E′)]
= kρ(H,E′)

Therefore, if P(E|Hi) = kP (E′|Hi) for each Hi ∈ H, then ρ(Hi,E) =
kρ(i, E

′) for each Hi ∈ H.
The proof in the case of m is similar. Suppose that P(E|Hi) =

kP (E′|Hi) for each Hi ∈ H. Let H be an arbitrarily chosen member of
H. Then from (1) we have:

m(H,E) =df P(E|H) − P(E) = k(E′|H) − kP (E′)(3)

= k[P(E′|H) − P(E′)] = km(H,E′).

The proof in the case of n follows easily, once we note that, by the theorem
of total probability,

P(E|H̄a) =
∑
i �=a

P (Hi|H̄a)P (E|Hi),

since for every i �= a, Hi entails H̄a. Suppose that P(E|Hi) = kP (E′|Hi)

for each Hi ∈ H, and let Ha be an arbitrarily chosen member of H. Then
we have:

n(Ha,E) =df P(E|Ha) − P(E|H̄a)(4)

= P(E|Ha) −
∑
i �=a

P (Hi|H̄a)P (E|Hi)

= kP (E′|Ha) −
∑
i �=a

P (Hi|H̄a)kP (E′|Hi)

= k


P(E′|Ha) −

∑
i �=a

P (Hi|H̄a)P (E′|Hi)




= k[P(E′|Ha) − P(E′|H̄a)] = kn(Ha,E
′).

Thus, ρ, n, and m are k-measures.
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Let us consider how these observations relate to the example of the
binomial and negative binomial experiments given above in Section 2. In
that example, we considered two experiments. In the first (the binomial),
it was decided that the coin would be flipped ten times and the number of
heads recorded. The outcome was five heads. In the second (the negative
binomial), we decided that we would keep flipping the coin until we got
five heads. The outcome was that the fifth head was obtained on the tenth
flip. Let E describe the outcome of the binomial experiment and E′ the
outcome of the negative binomial experiment. Suppose that the Hi’s in H
each specify a distinct probability that the coin will come up heads when
flipped. Then we saw that P(E|Hi) = 2P(E′|Hi), for each Hi ∈ H. Thus,
since ρ is a k-measure, ρ(Hi,E) = 2ρ(Hi,E

′). Hence, if we accepted ρ,
we would judge in this case that E provides greater confirmation (or less
disconfirmation) for H than E′.

Thus, a Bayesian who took ρ, m, or n as his confirmation measure
would reject the LP. Such a Bayesian would also say that the stopping rule
is relevant to the evidential assessment of an experimental result. However,
making c(H,E) a k-measure comes at a cost, since Bayesian analyses
that assume (C) in the process of accounting for some feature of scientific
methodology would have to be dismissed as unsound. A further difficulty
is that if c(H,E) is a k-measure, a very useful principle of Bayesian
statistics must be rejected. It is to this issue that I now turn.

5. THE SUFFICIENCY PRINCIPLE

The statistician Allan Birnbaum (1962) showed that the LP could be de-
rived from two suppositions, namely, the principles of sufficiency and
conditionality. The sufficiency principle asserts something about what in-
formation can be omitted in the description of an experimental outcome
without altering its evidential force. This principle is commonly accepted
by Bayesian and frequentist statisticians alike. The conditionality prin-
ciple, stated roughly, asserts that “experiments not actually performed
should be irrelevant to conclusions” (Berger and Wolpert 1988, p. 1). Since
the LP follows from the sufficiency and conditionality principles, one who
rejects the LP must also reject at least one of them. In this section, I show
that a Bayesian who rejects the LP will also be strongly inclined to reject
the sufficiency principle. In particular, if c(H,E) is a k-measure, then the
sufficiency principle no longer holds.

The sufficiency principle asserts something about what sorts of statist-
ics are appropriate for characterizing the data produced by an experiment.
For example, in the coin flipping case, one could provide the complete list
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of outcomes of ordered throws of the coin, or one might record the number
of heads, or one might only record the ratio of heads to tails. Each of these
different ways of describing the outcome of the experiment is a different
statistic and, as the example shows, some statistics contain more informa-
tion than others. Given that more work is required to record statistics that
provide more detailed information, it is natural to desire that our statistic
include all the relevant information and no more. The sufficiency principle
addresses exactly this point.

The expression sufficient statistic is defined as follows:

Sample statistic t is said to be sufficient, relative to the para-
meter of interest, θ , if the probability of any particular member
of the outcome space given t , is independent of θ . (Howson and
Urbach 1993, p. 189)

Suppose we let x represent the outcome space. Thus, in our example in
which we flip a coin ten times, the outcome space would be the set of all
possible ordered combinations of heads and tails in ten flips of a coin. The
statistic t , then, is a function that maps members of x onto a set of numbers.
For example, t could be defined as the number of heads. Suppose that each
member of H assigns a value to the parameter θ . For example, θ could
represent the probability that the coin will come up heads when flipped.
Then we can state the definition of a sufficient statistic in Bayesian terms
as follows:

t is a sufficient statistic with respect to θ if and only if, for all
Hi ∈ H, for all x ∈ x, and all values v of t , P(x|v & Hi) =
P(x|v).

For convenience, the clause to the right of the “if and only if” is commonly
abbreviated as P(x|t & θ) = P(x|t). I shall extend this notational shortcut
as follows: c(θ, t) = c(θ, x) is equivalent to, for each Hi ∈ H, c(Hi, t) =
c(Hi, x).

The sufficiency principle, then, tells us that a sufficient statistic omits no
information about the experimental outcome that is relevant to assessing its
evidential force (cf. Birnbaum 1962, p. 270). The sufficiency principle is
mainly useful as a justification for various labor saving procedures, since
it assures us that certain types of information can be omitted without any
cognitive loss. Of course, this does not mean that no information besides
that included in the sufficient statistic is relevant; rather, it means that any
information about the outcome not provided by the sufficient statistic is
evidentially irrelevant. In our formalism, the sufficiency principle can be
put as follows:
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SUFFICIENCY PRINCIPLE. If t is a sufficient statistic with respect to θ ,
then c(θ, t) = c(θ, x).

That is, the principle states that if t is a sufficient statistic, then describ-
ing the outcome in further detail makes no difference to the degree of
confirmation conferred upon the hypothesis.

As Howson and Urbach show (1993, 227), it is easy to give a Bayesian
argument for the sufficiency principle. The argument proceeds as follows.
Suppose that t is a sufficient statistic with respect to θ . Now by Bayes’
theorem, we have:

P(x|θ & t) = P(x|t) × [P(θ |x & t)/P (θ |t)](1)

Since the value of t is determined by x, (1) simplifies to:

P(x|θ & t) = P(x|t) × [P(θ |x)/P (θ |t)](2)

But since t is a sufficient statistic with respect to θ , P(x|θ & t) = P(x|t).
Hence, from (2) we have:

P(x|t) = P(x|t) × [P(θ |x)/P (θ |t)](3)

From (3) it follows that:

P(θ |x) = P(θ |t)(4)

Howson and Urbach’s argument for the sufficiency principle stops at this
point. But no doubt the following step is implicit. From (4), (C) enables us
to conclude that:

c(θ, x) = c(θ, t)(5)

Thus, if (C) is granted, then we have a straightforward Bayesian derivation
of the sufficiency principle.

However, we saw in the foregoing section that relinquishing the LP
necessitates abandoning (C). So a Bayesian who rejected the LP would
have to regard the above argument for the sufficiency principle as unsound.
Indeed, it is easy to invent examples in which the sufficiency principle is
false if c(H,E) is a k-measure. For instance, consider a simple binomial
example in which θ is the probability that a particular coin will come up
heads when flipped. Suppose that each member of H ascribes a distinct
value to θ . Let our experiment consist of two flips of the coin, so the
outcome space is as follows: x = {HH,HT, T H, T T }, where “H ” and
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“T ” are interpreted in the obvious way. Let the statistic t represent the
number of heads. For each Hi ∈ H,

P(HH |Hi & t = 2) = P(HH |t = 2) = 1(6)

P(HT |Hi & t = 1) = P(HT |t = 1) = P(T H |Hi & t = 1)

= P(T H |t = 1) = 0.5

P(T T |Hi & t = 0) = P(T T |t = 0) = 1.

Thus, we have that P(x|θ & t) = P(x|t), and hence t is a sufficient statistic
with respect to θ , so the antecedent of the sufficiency principle is satisfied.

For each Hi ∈ H, let pi be the value that Hi ascribes to θ . Then by the
binomial formula, we have for each Hi ∈ H:

P(HT |Hi) = pi(1 − pi)(7)

P(t = 1|Hi) = 2pi(1 − pi).(8)

Thus, from (7) and (8) we have:

P(t = 1|Hi) = 2P(HT |Hi), for each Hi ∈ H.(9)

Thus, if c(H,E) is a k-measure, c(Hi, t = 1) = 2c(Hi,HT ), for each
Hi ∈ H, which contradicts the sufficiency principle.

6. CONCLUSION

One can be a Bayesian and yet accept that stopping rules are evid-
entially relevant by choosing a Bayesian confirmation measure that is
also a k-measure, of which several have been seriously proposed. All k-
measures violate the LP and hence enable the stopping rule to influence
confirmation. However, two major inconveniences ensue from adopting a
k-measure as one’s Bayesian measure of confirmation. First, the common
Bayesian assumption that E and E′ confirm H equally if P(H |E) =
P(H |E′) must be given up. Second, the sufficiency principle, which is
of practical use in statistics, must also be abandoned. The desire to retain
(C) and the sufficiency principle are sensible reasons for not choosing
a k-measure as one’s Bayesian measure of confirmation, which thereby
provides an indirect Bayesian argument for the LP. However, it neverthe-
less remains the case that one could be a Bayesian, while rejecting the
LP and accepting the evidential relevance of stopping rules. Therefore,
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unconditional claims to the effect that Bayes’ theorem entails the LP are
oversimplifications of a much more complex situation.

NOTES

∗ I would like to thank two anonymous referees for helpful comments on an earlier draft
of this essay.
1 This objection seems to have been first made by the statistician P. Armitage in the course
of a discussion at a statistics conference (Savage 1962, 72). The argument is also discussed
by Berger and Wolpert (1988, pp. 80–82).
2 See Birnbaum (1962, p. 271), Edwards, Lindman and Savage (1963, pp. 237–240), and
Berger and Wolpert (1988, p. 19).
3 For a more general justification and discussion of this claim, see Birnbaum (1962) and
Berger and Wolpert (1988, pp. 74–79).
4 Some Bayesians would accept these principles only with qualifications. For example,
several Bayesians have argued that although it is generally reasonable to assume strict
conditionalization, this principle may fail under certain circumstances (cf. Maher 1993;
Howson 1997). Moreover, objective Bayesians would restrict the principles of qualitative
confirmation to cases in which P satisfies additional constraints of rationality beyond the
axioms of probability (cf. Maher 1996). However, such qualifications make no difference
to the argument presented here.
5 Andrew Backe also asserts that Bayes’ theorem entails the likelihood principle (1999,
p. 354).
6 A version of ρ was proposed by Carnap (1962, 360), while n and m have been proposed
by Robert Nozick (1981, p. 252) and H. Mortimer (1988, §11.1), respectively.
7 Fitelson (2001, S125–S130) argues in favor of l.
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